Supply Chain Planning under Uncertainty: A Chance Constrained Programming Approach

نویسندگان

  • Kishalay Mitra
  • Ravindra D. Gudi
  • Sachin C. Patwardhan
  • Gautam Sardar
چکیده

Uncertainty issues associated with a multi-site, multi-product supply chain planning problem has been analyzed in this paper using the chance constraint programming approach. In literature, such problems have been addressed using the two stage stochastic programming approach. While this approach has merits in terms of decomposition, computational complexity even for small size planning problem is large. This problem is overcome in our paper by adopting the chance constraint programming approach for solving the mid term planning problem. It is seen that this approach is generic, relatively simple to use, and can be adapted for bigger size planning problems as well. We demonstrate the proposed approach on a relatively moderate size planning problem taken from the work of McDonald and Karimi (1997) and discuss various aspects of uncertainty in context of this problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Blood Transportation in Disaster Relief Considering Facility Disruption and Route Reliability under Uncertainty

The blood supply chain as a part of healthcare systems play a substantial role in health improvement within societies, and blood supply for daily needs and especially in disasters is the challenges requiring more attention. This paper presents a fuzzy-stochastic mixed integer linear programming model to design blood supply chain network for disaster relief. To deal with the uncertainty in model...

متن کامل

Optimizing decentralized production–distribution planning problem in a multi-period supply chain network under uncertainty

Decentralized supply chain management is found to be significantly relevant in today’s competitive markets. Production and distribution planning is posed as an important optimization problem in supply chain networks. Here, we propose a multi-period decentralized supply chain network model with uncertainty. The imprecision related to uncertain parameters like demand and price of the final produc...

متن کامل

A Stochastic Programming Approach for a Multi-Site Supply Chain Planning in Textile and Apparel Industry under Demand Uncertainty

In this study, a new stochastic model is proposed to deal with a multi-product, multi-period, multi-stage, multi-site production and transportation supply chain planning problem under demand uncertainty. A two-stage stochastic linear programming approach is used to maximize the expected profit. Decisions such as the production amount, the inventory level of finished and semi-finished product, t...

متن کامل

A Chance Constrained Integer Programming Model for Open Pit Long-Term Production Planning

The mine production planning defines a sequence of block extraction to obtain the highest NPV under a number of constraints. Mathematical programming has become a widespread approach to optimize production planning, for open pit mines since the 1960s. However, the previous and existing models are found to be limited in their ability to explicitly incorporate the ore grade uncertainty into the p...

متن کامل

Optimal production strategy of bimetallic deposits under technical and economic uncertainties using stochastic chance-constrained programming

In order to catch up with reality, all the macro-decisions related to long-term mining production planning must be made simultaneously and under uncertain conditions of determinant parameters. By taking advantage of the chance-constrained programming, this paper presents a stochastic model to create an optimal strategy for producing bimetallic deposit open-pit mines under certain and uncertain ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008